[6186]-503

S.E. (Civil) (Insem)

FLUID MECHANICS
(2019 Pattern) (Semester - III) (201003)

Time : 1 Hour]
[Max. Marks : 30
Instructions to the candidates:

1) Answer Q. 1 or Q.2, Q. 3 or Q.4.
2) Figures to the right indicate full marks.
3) Neat diagrams must be drawn wherever necessary.
4) Assume suitable data if required.
5) Use of logarithmic tables, slide rule, Mollier charts, electronic pocket calculator (nonprogrammable) and steam tables is allowed.

Q1) a) If density of a liquid is $837 \mathrm{~kg} /$ hnfind its:
i) specific weight,
ii) secific gravity and
iii) specific volnhe. If kinematic viscosity of this liquid is 1.73 etssec, obtain itsfynamic viscosity.
b) Differentidee between "Surface Tension" and "Capillarity". Give practical example of each.
c) Define "Metacenter" and "Metacentric Height". How they are important in case of floating body.

OR
Q2) a) Five liters of oil weights 61.80 N. Calculate (i) Specific Weight, (ii) Specific Mass, (iii) Specific volume and (iv) Relative Density.
b) What is kinematic viscosity? Why it is so called? Give its units and dimensions.
c) Explain with neat sketches various conditions of equilibrium related to stability of floating body.

Q3）a）Define：（i）Path Line（ii）Stream Line（iii）Stream Tube（iv）Streak Line．［5］
b）Derive the continuity equation for three－dimensional flow．
c）Sketch a Pitot tube and explain how it is used to measure the velocity of flowing fluid．

Q4）a）Enlist different types of fluid flows and explain anyone in detail．
b）Derive the＂Euler＇s Equation of Motion＂along a stream tube．
c）Oil of specific gravity 0.8 flows in a horizontal pipe at a height of 3 m above a datum plane．At a section of the pipe，diameter is 120 mm and the pressure intensity is $125 \mathrm{KN} / \mathrm{m}^{2}$ ．If the total energy at the section is 25 m ，find the rate of flow of oil．

なゥゥa

